AI-assisted design of microlearning media for basic japanese grammar
DOI:
https://doi.org/10.26499/bebasan.v12i1.274Keywords:
japanese language education, microlearning, AI-Assisted Development, media designAbstract
The objective of this study is to evaluate the feasibility of AI-assisted microlearning-based instructional videos for teaching Basic Japanese Grammar 1 (Bunpou I) at Universitas Negeri Jakarta. This research addresses the persistent challenge of limited classroom time and the lack of accessible, engaging self-study resources for first-semester Japanese learners, who often struggle with unfamiliar scripts and complex grammar structures. Recognizing the learning preferences of Generation Z—who favor short, visually rich, and technology-driven content—this study integrates Artificial Intelligence tools into the instructional design process to develop concise, focused explainer videos. Employing a Research and Development (R&D) methodology based on the PPE model (Planning, Production, Evaluation), the study involved syllabus analysis, AI-assisted media production, and expert validation, followed by a preliminary student trial. The instructional video received high feasibility scores from both media (3.62) and content experts (3.60), and student feedback indicated improved comprehension and engagement. The novelty of this study lies in its systematic integration of AI tools—such as Gemini AI, Canva Magic Media, and D-ID AI—for storyboard generation, visual content creation, and narration. The findings suggest that this AI-integrated microlearning model offers a scalable and effective instructional design framework for foreign language education, particularly for beginner learners in digital learning environments.
References
Bhat, R. A. (2023). The impact of technology integration on student learning outcomes: A comparative study. International Journal of Social Science Educational Economics Agriculture Research and Technology (IJSET). ResearchGate. https://www.researchgate.net/publication/373266726
Corbeil, J. R., & Corbeil, M. E. (2024). Editorial Note: Designing microlearning for how people learn. Educational Technology & Society, 27(1), 134–136. https://doi.org/10.30191/ETS.202401_27(1).SP01
Fitria, T. N. (2022). Microlearning in teaching and learning process: A review. Cendekia: Jurnal Ilmu Sosial, Bahasa dan Pendidikan,, 2(4), 114–135. https://doi.org/10.55606/cendikia.v2i4.473
Jeon, J., & Lee, S. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies, 28, 15873–15892.
Kundu, A., & Bej, T. (2025). Transforming EFL teaching with AI: A systematic review of empirical studies. International Journal of Artificial Intelligence in Education.
Mayer, R. E. (2021). Multimedia learning (3rd ed.). Cambridge University Press.
Monib, W. K., Qazi, A., & Apong, R. A. (2025). Microlearning beyond boundaries: A systematic review and a novel framework for improving learning outcomes. Heliyon, 11, e41413. https://doi.org/10.1016/j.heliyon.2025.e41413
Noverisa, E. J., Setiawati, N., & Prasetio, V. M. (2022). Pengembangan e-modul interaktif berbasis android dalam mata kuliah Bunpou I. Kagami: Jurnal Pendidikan dan Bahasa Jepang, 13(1), 64–78.
Pebriantika, L., Rahmi, J., Adesti, A., & Eriyanti. (2024). Efektifitas Penerapan Metode Microlearning untuk Meningkatkan Hasil Belajar Mahasiswa. Jurnal Educendikia. https://jurnal.itscience.org/index.php/educendikia/article/download/4870/3602/21756
Polyzi, P., & Moussiades, L. (2023). An artificial vocabulary learning assistant. Education and Information Technologies, 28, 16431–16455.
Prasetyo, A. (2024). Implementasi Pendekatan Teknologi dalam Pengembangan Kurikulum Merdeka di Sekolah Dasar. Dharmas Education Journal, 5(1), 32-39. https://pdfs.semanticscholar.org/c653/6efa96590f65b20122606c0f86aea96f527f.pdf
Satiani, L. N. (2019). Masalah-masalah dalam Pengajaran Bahasa Jepang Pariwisata pada Program Studi Destinasi Pariwisata (DESPAR) di Universitas Kristen Satya Wacana. Prosiding Inovasi Pembelajaran Bahasa Jepang serta Implementasinya Menjawab Tantangan Revolusi Industri 4.0, 140-160.
Stanford HAI. (2023, March 9). AI will transform teaching and learning. Let’s get it right. Stanford Institute for Human-Centered Artificial Intelligence. https://hai.stanford.edu/news/ai-will-transform-teaching-and-learning-lets-get-it-right
Yeh, H.-C. (2024). Revolutionizing language learning: Integrating generative AI for enhanced language proficiency. Educational Technology & Society, 27(3), 335–353.
Yunina, O. (2023). Artificial intelligence tools in foreign language teaching in higher education institutions. Luhansk Taras Shevchenko National University. https://pdfs.semanticscholar.org/5891/d46d92e3848daf6acf3e67305f4a09a89e72.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Bébasan

This work is licensed under a Creative Commons Attribution 4.0 International License.